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Simple numerical solution of the partial-wave 
Lippmann-schwinger equation 

M S STERN? 
Centre for Computer Studies, University of Hull, Hull, UK 

MS received 23 August 1971 

Abstract. The partial-wave Lippmann-Schwinger integral equation is reduced to a system 
of simultaneous linear equations at negative energies and the negative energy solution is 
analytically continued to positive energies by means of Pade approximants. This method 
of solution is suitable for application to interactions which contain both attractive and 
repulsive regions as well as to purely attractive or purely repulsive potentials. 

1. Introduction 

The off-shell partial-wave T matrix 7 ; ( p , ,  p 2  ; k 2 )  satisfies the Lippmann-Schwinger 
equation 

at energy k 2 .  On the energy shell the solution of this equation is (Warburton and Stern 
1969) 

(1.2) 
2k 

T ( k ,  k ;  k 2 )  = -- exp(i8,) sin d, 
7c 

where d, is the phase shift with orbital angular momentum 1. The two-particle interaction 
V, vanishes when one of its momentum variables is infinite. 

The most convenient form of the two-body T matrix to use in the three-particle 
equations of Faddeev (1961) is an eigenfunction expansion separable in the off-shell 
momenta (Lovelace 1964, Bierter and Dietrich 1967a, 1967b, Fuda 1969, Karchenko 
er al 1970). However, such an expansion may be very difficult to evaluate when the 
potential contains both attractive and repulsive regions (Warburton and Stern 1969. 
Stern 1969, pp 11 3-29). This paper describes a simple method of solving equation (1 .  I )  
which is applicable to interactions that change sign as well as to purely attractive or 
purely repulsive interactions. The procedure reduces the integral equation to a system 
of simultaneous linear equations at negative energies and analytically continues the 
negative energy solution to positive energies through the upper half k 2  plane by means 
of Pade approximants. This approach avoids the problems associated with singular 
integrals at positive energies (Mongan 1969). 
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2. Negative energy solution 

At negative definite energies we substitute the transformation 
Y 
A q = -  

1 - x  

which maps the interval 0 < q < CO on to the interval 0 < x < 1, into equation (1.1) 
to obtain 

in which = 0 when the ‘x’ corresponding to one of its off-shell momenta equals unity. 
The first step towards establishing a numerical solution of this negative energy integral 
equation is to replace the integral on the right hand side by a quadrature formula. If 
Simpson’s rule is chosen we obtain 

where 

CO = C2” = 1 1 X m  
4, = l-x, h = x , - x , - ~  = - 

2n 

c1 = CJ = . . .  = C Z n - l  = 4 c2 = cq = . . .  = C Z n - 2  = 2. 

If the off-shell momentum variable p 1  is restricted to the mesh points of the numerical 
integration, equation (2.3) yields a system of (2n + 1) simultaneous linear equations 

where t = 0,1,2, .  . . ,2n (6” = 1,6,, = 0 for t # m). But, as the potential V) vanishes 
when either m = 2n or t = 2n, we are in fact left with a system of 2n simultaneous linear 
equations for the partial wave amplitude at negative definite energies k2 

where t = 0,1,2, .  . . ,2n- 1. This system can be solved very rapidly on a computer to 
yield T(q,, p ;  k z )  for m = 0,1,2, . . . ,2n - 1. (A system of order 40 can be dealt with in a 
matter of seconds on an ICL 1905E computer.) The rate of convergence to  an acceptable 
solution can be examined by solving equations (2.6) for various orders of the system. 
However, care should be taken to avoid loss of accuracy due to rounding errors when the 
number of equations is very large. (It should be remembered that the solution of these 
equations also yields the values of IT;(p, 4,; k z )  because of time-reversal invariance of the 
T matrix.) Computer calculations have shown that this system of equations preserves 
bound state poles of the partial-wave T matrix if the interaction under consideration 
forms any bound states. 

The system of algebraic equations (2.6), when considered as a negative energy 
representation of the partial-wave Lippmann-Schwinger equation (1. l), is analogous 
to a negative energy finite difference solution of the partial-wave Schrodinger equation 
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derived by Stern and Warburton (1972). Simpson's rule was chosen to represent the 
integral in equation (2.2) because it is a fast reliable method in which the number of mesh 
points can be varied very easily. 

3. Use of Pade approximants 

As the scattering amplitude is an analytic function (apart from possible poles on the 
negative real axis) in the kZ plane cut along the positive real axis and as it has the well 
known asymptotic behaviour (Weinberg 1963, Warburton and Stern 1969) 

(3.1) 

at high energies, it can be represented at both positive and negative energies by an [N, NI 
Pade approximant (Baker 1965, Garibotti and Villani 1969, Caser et al 1969) 

?;@I 3 PZi kZ) - W P I ,  PZ) 

in which it is expected that U , / ~ N  V,(pl,pz). The polynomial coefficients are, of 
course, functions of p1 and p 2 .  The zeros of the denominator polynomial determine 
whether there are any bound state or  resonance poles. If the T matrix is known at 
(2N + 1) negative energy values for a given pair of off-shell momenta, the curve passing 
through these points can be fitted by means of the approximant (3.2) by using the 
method described by Stern and Warburton (1972). After the coefficients a, and 6, 
( t  = 0,1,2,. . . , N )  have been computed this Pade approximant can be employed to 
analytically continue the partial-wave amplitude (for the same pair of off-shell momenta) 
from negative energies to positive energies through the upper half k 2  plane because such 
approximants preserve analytic properties of functions such as poles, zeros, and cuts. 
When p1 = p z  the analytic continuation can be used to evaluate the partial-wave 
T matrix on the energy shell, and by comparing the result obtained with that calculated 
from equation (1.2) one can estimate the order of accuracy of the off-shell amplitude 
computed from equations (2.6) and (3.2). 

It should be noted that the Pade approximant can be used at zero energy whilst 
equations (2.6) are restricted to k Z  < 0. 

4. Applications of the method 

Computer calculations have been performed with interactions of the form 

(4.1 i 

where Q l ( .  . . ) is a Legendre function of order 1 of the second kind. In the coordinate 
representation this potential has the more familiar form 

r =  1 

The method of solving the integral equation (1.1) described in the preceding sections 
was first tested on the attractive Yukawa potential V ( r )  = - exp( - r ) / r  for which results 
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are available from the eigenfunction expansion method (Warburton and Stern 1969, 
Stern 1969, pp 76-103). Equations (2.6), used with order 40 (ie h = 0.025), yielded 
results for the S wave Tmatrix which were in good agreement with those computed from 
the first three terms in the eigenfunction expansions at negative energies. The results 
were obtained more rapidly from the linear equations than from the eigenfunction 
expansions because evaluation of the coefficients required in each term of the latter 
involved complicated calculations. Special attention was given to To@, p ;  k 2 )  for 
p = 0.6, 1.0, and 1.5 (which coincided with three of the mesh points in the numerical 
integration); between 15 and 21 negative energy values of this amplitude, which were 
fitted by means of the Pade approximant (3.2), were obtained from equations (2.6) for 
each value ofp. When the three approximants were used for analytic continuations on to 
the energy shell the results obtained were in excellent agreement with those determined 
from the S wave phase shifts via equation (1.2). 

The reliability of equations (2.6) and (3.2) was also tested on the neutron-proton 
triplet S state potential (Coester and Yen 1963) 

4A exp( - 2pr )  A exp( - p) V ( r )  = - 
r r (4.3) 

with A = 42.48 and p = 2.307 (Warburton 1966). This interaction has a repulsive 
core and an attractive outer region. With the values of A and p just quoted, k 2  = 1 
represents an energy of 41.5 MeV in the centre of mass frame. Equations (2.6), solved 
with order 40 over a range of negative energies, and the resulting Pad6 approximant fits 
of order [8,8] to [lo, 101 for the cases p 1  = p z  = (0.6,1.0, 1.5) preserved the deuteron 
bound state pole of the off-shell amplitude at k2 = -0.0535 (2.22 MeV). When 
To@, p ;  k2 ) ,  for p = (0.6, 1.0, 1.5), was evaluated on the energy shell by using the relevant 
approximant the results obtained were in good agreement with those deduced from 
experimental triplet S state phase shifts via equation (1.2) (Warburton, private com- 
munication). When attempts were made with eigenfunction expansions to compute the 
off-shell neutron-proton amplitude, difficulties were encountered with some of the 
terms in the series (Stern 1969, pp 113-29). Equations (2.6) and (3.2) appear to be easier 
to use than eigenfunction expansions for the purpose of solving the partial-wave 
Lippmann-Schwinger equation numerically for interactions that change sign, such as 

Calculations have also been successfully carried out with other potentials of the 
form (4.2), including a nucleon-nucleon singlet S state potential that was studied in 
another paper (Stern and Warburton 1972). 

(4.3). 

5. Conclusions 

The numerical methods developed in $92 and 3 are suitable for solving the off-shell 
partial-wave Lippmann-Schwinger equation with interactions which contain both 
attractive and repulsive regions as well as with purely attractive or purely repulsive 
potentials. The approach is strongly recommended for those local interactions, such as 
(4.3), which are difficult to handle effectively with the eigenfunction expansion method. 
The off-shell scattering amplitude can be computed far more easily by employing the 
techniques described in this paper than by using the numerical methods of Mongan 
(1969) which involve the inversion of large complex matrices. 
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